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Analysis of Transmission Line Structures Using a

New Image–Mode Green’s Function

I. TAI LU, MEMBER, IEEE. AND R. L. OLESEN, MEMBER, IEEE

Abstract —A hybrid image–mode–moment method is developed for

the quasi-TEM analysis of transmission lines of arbitrary cross section

and number suspended between infinite parallel gronnd planes. This

new method combines the conventional moment method and a new

image-mode Green’s fnnction systematically in a single formulation.

The moment method is employed to model the interaction between

transmission iines, and the new image-mode method is nsed to fnrnish

the Green’s function of the parallel plates, Several configurations are

studied and are compared with work given in the references where

possible.

I. INTRODUCTION

Shielded multiconductor transmission lines of arbitrary cross

section embedded in multilayered dielectric media have applica-

tions in coupler and filter design. For complex structures such as

these, an appropriate procedure for analysis is the moment

method. However, difficulties arise with the requirement of

finding an appropriate Green’s function for the layered media

which exhibits numerical efficiency.

Under a quasi-TEM approximation, the field of the transverse

cross section is governed by two-dimensional static field equa-

tions. For solution, one must solve the Green’s function problem

of Poisson’s equations subject to the boundary conditions. A

free-space Green’s function has been used for the solution of

this type of problem [I]. An advantage of this approach is the

simplicity of the Green’s function; however, this requires the

solution of a large system of simultaneous equations. Layered

Green’s functions can overcome these difficulties but they can

be very complicated to solve. There are three conventional

alternative representations of the Green’s function for layered

media [2]–[5].

An image representation [2] is suitable for structures which

have few layers, typically one m- two. This is because a prolifera-

tion of images makes this representation impractical when the

number of layers is large. This representation is numerically

efficient only when the source and the receiver are close to each

other compared to the overall dimensions of the structure within

which they are placed. A second representation [3], the spectral

integral, has convergent properties similar to those of the image

representation. The spectral integral formulates the Green’s

function in terms of a superposition of evanescent spectra,

which represent all of the images collectively and, therefore, can

alleviate the difficulties of the image proliferations. However,

the image representation is convenient for the separation of the

dominant images, which experience fewer reflections and hence

have a stronger influence, from the rest of the images. This

property is especially important when the source and receiver

overlap each other, in which case the singular cmtribution due

to the direct source has to be treated separately. Finally, there is
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the modal representation [4], [5]. This option represents the

Green’s function in terms of evanescent modes. Higher order

modes die out quickly when the sQurce and the receiver are

widely separated, but are not negligible for a small separation.

The convergent properties of the modal representation comple-

ment those of the previous two representatims.

Due to the complementary properties of these conventional

representations for the Green’s function, it may be advanta-

geous to combine them in a single formulation which would

achieve numerical efficiency fm a broad class of problems. In

fact, this type of hybrid approach has been developed in the

dynamic case for a single slab [6] generalized to multilayered

media [7] and to a cavity [8]. However, the hybrid ray–mode

method is most commonly thought of as being useful for large

waveguides, which support many propagating modes. Here, we

extend the theory to the static limit, where no propagating

spectra exist. By realizing that images, modes (evanescent), and

spectra (evanescent) in the static case are analogous to rays,

modes (evanescent and propagating), and spectra (evanescent

and propagating) in the dynamic case, respectively, one can

apply the methods developed previously for the dynamic prob-

lems to the static problems.

For a small separation between the source and the receiver, a

modified image solution is developed to represent dominant

image terms in closed form and treat the rest of the images

collectively as a remainder. This remainder, represented by a

spectral integral, may be evaluated by numerical integration

along a fast convergent path through contour deformation in the

complex spectral domain. (Unlike the dynamic case, there will

be no poles intercepted by this contour deformation.) This

modified image solution has the advantages of bdh image and

spectral representaticms, i.e., convenience for the separation of

the singular term and a remedy for the difficulty arising from

image proliferations. For a large separation between the source

and the receiver, the modal solution is very efficient. An image-

mode formulation is developed tQ combine the modified image

representation with the modal method to provide an efficient

algorithm for all possible arrangements of source and receiver

locations. The new Green’s function formulation is suitable for

application of the moment method to the analysis of transmis-

sion line structures.

This new image-mode-moment method is applicable not only

to the above-mentioned microwave devices, but also to the much

broader area of monolithic integrated circuits and printed cir-

cuits, where their general models can be described by multiple

conducting (or dielectric) rods or strips embedded in layered

structures. The extension of the quasi-TEM analysis to a full-

wave analysis, if desirable, merely requires the replacement of

the image–mode formulation by the analogous form in the

dynamic case [9].

II. FORMULATION

We consider L conductors of arbitrary shapes and locations

within a pair of parallel grounded conducting plates. The volt-

age at any point (x, z) within the parallel plates can be repre-

sented by a sum of surface integrals, which are given by

V(x, z)= ~ ( “(X;’Z’)G(X; Z,X’,+S, (X’, z’)es[
1=1 ‘/

(1)
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where al is the unlmQwn charge density, SL is an integration

path along the boundary of the lth conductor, and ● is the
permittivity of the medium. G(x, z; x’, z’) is the Green’s func-

tion which represents the voltage at (x, z) due to a line charge at

(x’, z’). By letting (x, z) represent points on the surfaces of
conductors, we have a set of L simultaneous integral equations

which can be solved by the moment method. After solving for

u1, the total charge on the lth conductor and, hence, the
capacitance matrix of the system can be derived. In the present

paper, the Green’s function in (1) is given by the image–mode

method, which exhibits accelerated convergence. The numerical

efficiency of the image–mode Green’s function makes use of the

moment method practical, even for a large system of simultane-

ous equations.

III. GREEN’S FUNCTION FORMULATION FOR PARALLEL PLATES

We seek the solution of the two-dimensional problem

[1~+~ G(x, x’; Z, Z’) = ‘/i(X-X’)8(Z– Z’) (2)

excited by a line source located at x = x’, z = z’ in a parallel-

plate waveguide with walls at z = O and z = a where G = O. The

alternative representations for the static Green’s functicm are

similar to that given in the dynamic case [6]. NQte that the

dynamic case has both propagating and evanescent spectra;

however, the static case has only evanescent spectra.

A. Integral Representation

Following a Fourier transfmm and the characteristic Green’s

function method, we find the solution for the tw@dimensional

spectral Green’s function to be

~zl(x–x’)

A(()-= [eiAlz-Z’l _ eXZ+Z’) _ eW2a-(z+~’D + eW2a-lZ-Z’1)]

(3)

where A = ( – <2)1/2 is defined to be positive when real and to

have a positive imaginary part when complex. Although the

integrand in (3) is an even function of A, we shall require this

definition for image expansions in subsequent developments.

There are pole singularities (~= ~ imm /a, m =1,2, “ ..) con-

tained in the integrand of (3).

B. Modal Representation

The integrand decays in the upper half Qf the ~ plane and the

lower half of the ~ plane, for x > x’ and x < x’, respectively. By

the residue theorem we have the sum of decaying modes along x

away from the source plane x = x’:

G=~~l~~sin
(:z)sin(%z’)exp( -%’x-x”)

(4)

For large lx – x’I the modal representation converges very rapidly
due to the decaying exponential dependence. If, however, the
sou~ce and the receiver are close, the modal representation
converges very slQwly, requiring many summation terms.

C. Image Representation

Expanding the denolmin ator of (3) in a geometric series, we

obtain the following image representation for the Green’s func-

tion:

G= ~Ga, Ga=frnA(~)e2’Aa” d~.
CY=o m

The integral in (5) can be written in closed form:

{

(x - X’)2+ (2aa + 12- z’1)’
Ga =’ ~ in

(x - x’)27(2aa +(z + Z’))2

(x- x’)2+(2(a +l)a - /z-z’l)’
——

“(x -x’)2+(2(a +l)a-(z+ z’))’
}

(5)

(6)

Notice that (5) with (6) is the conventional image solution. The

infinite image sum can, under certain conditions (e.g., Ix – x’1 >>

a), exhibit poor convergence. In the next section, the infinite
sum is converted to a finite sum plus a remainder in order to
imprQve the computational efficiency.

D. Modified Image Representation

Expanding the denominator of (3) in a partial geometric
series, the infinite sum in (5) can be written as a finite sum plus
a remainder term:

The direct image term is separated explicitly in (7), which
behaves singularly if the source is close to the receiver. The
remainder is nothing but a collection of images, which can be
evaluated by a power series summation and reformulated into a
closed form Qr can be represented as a spectral integral and
integrated along the steepest decent path (see [7]). Generaliza-
tion to multilayered structures is straightfQrward by employing
the matrix formulation shown in [7]. The convergence of the
numerical approach is sufficiently high to make a closed form
unnecessary for multilayered structures.

E. Image – Mode Representtution

For solution of problems where the separation between the
source and the receiver cannot be limited so as to be useful for

the image or mode representations, a mixed image–mode repre-
sentation is likely to be more numerically efficient. In this case
the Green’s function will Ibe reduced to the modal solution (4)
when lx – x’I is large andl to the modified image solution (8)
when Ix – x’1 is small. The modified image solution will be
further reduced to image terms alone if the remainder is negligi-
ble. During implementation we predetermine a threshold value
T for Ix – x’I where the mode and mQdified image fQrmats are
employed for T < lx – x’I and T > lx – x’1, respectively. Small
perturbations of T do not affect the accuracy or efficiency of the
algorithm. Thus, the determination of T is not crucial and can
be done systematically. Basic rules are given in [9].

IV. NLJMERICAL RESULTS

The configuration considered for the numerical analysis is

shown in Fig. 1. Also considered is a single conducting rod.

Parts (a) and (b) of Fig. 2 are plots of the surface charge density

on the two conductors. This problem has been considered by a

modal Green’s function method [5]. Comparisons of this paper’s
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Fig. 1. The configuration considered for the numerical analysis.
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Fig. 2. Surface charge densities on the two conductors of Fig. 1 versus
boundary elements, denoted clockwise from point A. The voltage on the
first conductor is 1 V, and the second conductor and the two conducting
planes are grounded. (a) First conductor. (b) Second conductor. 1) d/a=

0.96, s/a= l.06; 2) d/a= O.40, s/a= O.48; 3) d/a= O.544, s/a= l.168.

results with those of [5] and [10] are shown in Tables I and II;

the agreement is within 2%.

V. CONCLUSIONS

It has been demonstrated that amulticonductor transmission
line can be efficiently analyzed using a new method which
combines the moment method with a new image–mode Green’s
function formulation. The image–mode method is a static exten-
sion of the hybrid ray–mode formulation, which to date has
been considered desirable only for large waveguides, which
support many propagating modes. Here we have shown that the
concept of combining resonant solutions such as modes with
“traveling” solutions such as rays is useful even in the static
extreme. The moment method’s advantage is its flexibility to
model arbitrarily shaped, and placed, finite structures. The
numerical efficiency of the image–mode Green’s function makes

TABLE I

COMPARISON OF IMAGE-MODE–MOMENT METHOD SOLUTION

WITH REFERENCES FOR THE NORMALIZED CAPACITANCE

OF A SINGLE ROD

rtla I91a ] This Method I References Remarks
V 1-1.0 volt (Secondrod not considered here) I

[l OISeeTable 111[51SeeTable 1
C12C Cfzt! Clzc

0.8002.300 7,?178 7.370 SnrgleRod
0.600 2.100 4.249 4.274 4268 Apprommatton
0.400 1,900 2.730 2.744 2.742 Usedm Ref.1101
0.200 1.700 1.707 1716 1.715
0.100 1.600 1.242 1.230

TABLE II

COMPARISON OF IMAGE–MODE–MOMENT METHOD SOLUTION WITH

REFERENCES FOR THE NORMALIZED CAPACITANCE

OF A TWO-ROD CONFIGURATION

d/a I sla I This Method \References
vl-v9-l.ovolt

1 Ch ~51SeeTable 1! (Q-1)

1
.354 0.530 3.912 3.913

.400 0.480 4.167 4.16S

.400 0.520 4.265 4.263

.400 1,160 5.217 5.213

.54411 .7121 7.388 7.386

V1- l.ovolt Vz--l.o volt

w 5] SeeTabte 11(Q--l )

3.354 0.530 7.543 7.545
3.400 0.480 11.240 11.237
3.400 0.520 9.558 9.512
0.400 1.160 5.700 5694
>.544 1.712 7.535 7.530

use of the moment method practical in single-layer or multilay-

ered media. This algorithm is not limited to the analysis of two

conductors; any number could be considered. Iterative schemes

are available to provide for efficient computation of mutual

coupling. In addition the close proximity of conductors is not a

problem, due to the explicit removal of any singularities encoun-

tered. The combination of the most efficient global Green’s

function solution (image–mode) with a flexible local coupling

operator (moment method) is potentially very powerful for ap-

plication to many problems with planar symmetry.
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The Design of an Ultra-Broad-Band 3 dB Coupler

in Dielectric Waveguide

YING SHEN, DE-MING XU, AND CHEN LING

M,s&act —A new structure of embedding dielectric waveguide coupler

is described which offers advantages such as very flat frequency re-

sponse over 50% bandwidth, simple construction, and good repeatabil-

ity. A theoretical analysis by a superposition of normal modes is pre-

sented. Experimental resnlts at the 3 mm wave band are given which

show agreement with theoretical calculations.

I. INTRODUCTION

Traditional dielectric waveguide (DW) couplers are made

with two identical uniform DWS (shown in Fig. l(a)) [5], [11.
This structure has narrow bandwidth response characteristics.

The reasons for this are that 1) all the power propagated in one
guicle can be transferred to the other if the coupling region is
long enough, so that the coupling distance is strongly frequency
dependent; 2) the coupling between two DWS depends on
evanescent fields; and 3) both guides have the same dispersive
characteristics, therefore they work with each other.

Many researchers have treated the problem of designing
dielectric waveguide couplers fo~ millimeter-wave applications
[1]-[9], and certain techniques used in the very well known
Rib let coupler date from 30 years ago [6]. Recently these tech-
niques have been of interest to Kim et al. [3] and He [4], who

improved reason 2) described above (see Fig. l(b)). In 1987,

Ikalainen and Matthaei [1] obtained wide bandwidth as well by

improving reason 1); they proposed an asymmetrical cross sec-

tion DW coupler (see Fig. l(c)).

III this paper, a new kind of directional coupler, shown in Fig.

l(d), is investigated where two coupled guides with unequal

cross sections are connected directly. It combines the merits of

[1], [3], and [4], and the effects of dispersion are also reduced.

Therefore, ultra-broad-band frequency characteristics are

achieved.

We discuss the basic principles of the connected asymmetric

coulpler. The theoretical bandwidth is on the order of 50%.

Experimental results in the frequency range 76–110 GHz are

presented, and these show agreement with theoretical calcula-

tion.

II. THEORETICAL ANALYSIS

With the simplicity of the analysis, we assume that the dielec-

tric slab waveguide directional coupler is lossless, with the

analysis being confined to the parallel coupling segment only.
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(a) (c)

Ll=0.96k0, L2=0.97k0, R=6.8k0

(d)

Fig. 1. Various directional couplers in dielectric waveguide.
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Fig. 2. Distribution of dielectric constants.

The following theoretical analysis is based on the

stated above.

In Fig. l(d) is shown the layout of the actual coupler. Let

power be input into port 1; then port 4 and port 3 are the

coupled and the direct port, respectively. We take the standard

slab model to be a lossless dielectric medium. The dielectric

constant c(X) is assumed to vary only with X, as shown in Fig.

2. If the waves are assumed to travel in the Z direction with

propagation constant ~, then the electric and magnetic fields

are independent of Y and can be expressed as

E= E(X) *expj(co–/3z)

H= H(X) *expj(Ot–@z).

For the TE mode, it follows from Maxwell’s

the electric field EY( X) is described by

foam

conditions

(1)

equations that

dE;(X)/dX’+ [k2e(X)-P2]EY(X) =0. (2)
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