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Analysis of Transmission Line Structures Using a
New Image—Mode Green’s Function

1. TAI LU, MEMBER, IEEE, AND R. L. OLESEN, MEMBER, IEEE

Abstract —A hybrid image—mode-moment method is developed for
the quasi-TEM analysis of transmission lines of arbitrary cross section
and number suspended between infinite parallel ground planes. This
new method combines the conventional moment method and a new
image-mode Green’s function systematically in a single formulation.
The moment method is employed to model the interaction between
transmission lines, and the new image-mode method is used to furnish
the Green’s function of the parallel plates. Several configurations are
studied and are compared with work given in the references where
possible,

1. INTRODUCTION

Shielded multiconductor transmission lines of arbitrary cross
section embedded in multilayered dielectric media have applica-
tions in coupler and filter design. For complex structures such as
these, an appropriate procedure for analysis is the moment
method. However, difficulties arise with the requirement of
finding an appropriate Green’s function for the layered media
which exhibits numerical efficiency.

Under a quasi-TEM approximation, the field of the transverse
cross section is governed by two-dimensional static field equa-
tions. For solution, one must solve the Green’s function problem
of Poisson’s equations subject to the boundary conditions. A
free-space Green’s function has been used for the solution of
this type of problem [1]. An advantage of this approach is the
simplicity of the Green’s function; however, this requires the
solution of a large system of simultaneous equations. Layered
Green’s functions can overcome these difficulties but they can
be very complicated to solve. There are three conventional
alternative representations of the Green’s function for layered
media [2]-[5].

An image representation [2] is suitable for structures which
have few layers, typically one or two. This is because a prolifera-
tion of images makes this representation impractical when the
number of layers is large. This representation is numerically
efficient only when the source and the receiver are close to each
other compared to the overall dimensions of the structure within
which they are placed. A second representation [3], the spectral
integral, has convergent properties similar to those of the image
representation. The spectral integral formulates the Green’s
function in terms of a superposition of evanescent spectra,
which represent all of the images collectively and, therefore, can
alleviate the difficulties of the image proliferations. However,
the image representation is convenient for the separation of the
dominant images, which experience fewer reflections and hence
have a stronger influence, from the rest of the images. This
property is especially important when the source and receiver
overlap each other, in which case the singular contribution due
to the direct source has to be treated separately. Finally, there is
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the modal representation [4], [5]. This option represents the
Green’s function in terms of evanescent modes. Higher order
modes die out quickly when the source and the receiver are
widely separated, but are not negligible for a small separation.
The convergent properties of the modal representation comple-
ment those of the previous two representations.

Due to the complementary properties of these conventional
representations for the Green’s function, it may be advanta-
geous to combine them in a single formulation which would
achieve numerical efficiency for a broad class of problems. In
fact, this type of hybrid approach has been developed in the
dynamic case for a single slab [6] generalized to multilayered
media [7] and to a cavity [8]. However, the hybrid ray—mode
method is most commonly thought of as being useful for large
waveguides, which support many propagating modes. Here, we
extend the theory to the static limit, where no propagating
spectra exist. By realizing that images, modes (evanescent), and
spectra (evanescent) in the static case are analogous to rays,
modes (evanescent and propagating), and spectra (evanescent
and propagating) in the dynamic case, respectively, one can
apply the methods developed previously for the dynamic prob-
lems to the static problems.

For a small separation between the source and the receiver, a
modified image solution is developed to represent dominant
image terms in closed form and treat the rest of the images
collectively as a remainder. This remainder, represented by a
spectral integral, may be evaluated by numerical integration
along a fast convergent path through contour deformation in the
complex spectral domain. (Unlike the dynamic case, there will
be no poles intercepted by this contour deformation.) This
modified image solution has the advantages of both image and
spectral representations, i.e., convenience for the separation of
the singular term and a remedy for the difficulty arising from
image proliferations. For a large separation between the source
and the receiver, the modal solution is very efficient. An image-
mode formulation is developed to combine the modified image
representation with the modal method to provide an efficient
algorithm for all possible arrangements of source and receiver
locations. The new Green’s function formulation is suitable for
application of the moment method to the analysis of transmis-
sion line structures.

This new image-mode-moment method is applicable not only
to the above-mentioned microwave devices, but also to the much
broader area of monolithic integrated circuits and printed cir-
cuits, where their general models can be described by multiple
conducting (or dielectric) rods or strips embedded in layered
structures. The extension of the quasi-TEM analysis to a full-
wave analysis, if desirable, merely requires the replacement of
the image—mode formulation by the analogous form in the
dynamic case [9].

II. FormuULATION

We consider L conductors of arbitrary shapes and locations
within a pair of parallel grounded conducting plates. The volt-
age at any point (x, z) within the parallel plates can be repre-
sented by a sum of surface integrals, which are given by

o(x'
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where ¢; is the unknown charge density, s, is an integration
path along the boundary of the /th conductor, and e is the
permittivity of the medium. G(x, z; x',z") is the Green’s func-
tion which represents the voltage at (x, z) due to a line charge at
(x',2"). By letting (x,z) represent points on the surfaces of
conductors, we have a set of L simultaneous integral equations
which can be solved by the moment method. After solving for
oy, the total charge on the I/th conductor and, hence, the
capacitance matrix of the system can be derived. In the present
paper, the Green’s function in (1) is given by the image—mode
method, which exhibits accelerated convergence. The numerical
efficiency of the image—mode Green’s function makes use of the
moment method practical, even for a large system of simultane-
ous equations.

IIL

We seek the solution of the two-dimensional problem

GREEN’s FUNCTION FORMULATION FOR PARALLEL PLATES

? o

— +—|G(x,x';z,2)=—8(x —x")6(z— 2 2
preldeed [l )=—8(x=x)8(z-2) ()
excited by a line source located at x = x', z=2z' in a parallel-
plate waveguide with walls at z =0 and z = g where G = 0. The
alternative representations for the static Green’s function are
similar to that given in the dynamic case [6]. Note that the
dynamic case has both propagating and evanescent spectra;
however, the static case has only evanescent spectra.

A. Integral Representation

Following a Fourier transform and the characteristic Green’s
function method, we find the solution for the two-dimensional
spectral Green’s function to be

G= /‘” A(f)

2;)\a ’

ex—x)
A==

[eiAlz—z'| _ eu\(z+z') _ etA(Zu—(z+z’)) + et/\(Za—|z——z’|)]
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where A =(—¢?)'/? is defined to be positive when real and to
have a positive imaginary part when complex. Although the
integrand in (3) is an even function of A, we shall require this
definition for image expansions in subsequent developments.
There are pole singularities ({ = + imm /a, m=1,2,--+) con-
tained in the integrand of (3).

B. Modal Representation

The integrand decays in the upper half of the { plane and the
lower half of the { plane, for x > x’ and x < x', respectively. By
the residue theorem we have the sum of decaying modes along x
away from the source plane x = x":

i‘,l %%sm(gz) s1n(?z )exp(— E|x X l)
4)

For large |x — x'| the modal representation converges very rapidly
due to the decaying exponential dependence. If, however, the
source and the receiver are close, the modal representation
converges very slowly, requiring many summation terms.
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C. Image Representation

Expanding the denominator of (3) in a geometric series, we
obtain the following image representation for the Green’s func-
tion:

= ¥ G Gu= [ AP L. ()
a=0 o
The integral in (5) can be written in closed form:
(x—x)V+Qaa+|z- 2>
“ "4 (x—x')Y+Q2aa+(z+2))°
(x—xV+(2a+1)a—|z - 2)*
: (6)

(x- x’)2+ (2(a+1)a—(z+ z’))2

Notice that (5) with (6) is the conventional image solution. The
infinite image sum can, under certain conditions (e.g., |x — x| >
a), exhibit poor convergence. In the next section, the infinite
sum is converted to a finite sum plus a remainder in order to
improve the computational efficiency.

D. Modified Image Representation

Expanding the denominator of (3) in a partial geometric
series, the infinite sum in (5) can be written as a finite sum plus
a remainder term:

({) 2iNAa

G= ZG+RN, N = ZG [ 42 (1)

The direct image term is separated explicitly in (7), which
behaves singularly if the source is close to the receiver. The
remainder is nothing but a collection of images, which can be
evaluated by a power series summation and reformulated into a
closed form or can be represented as a spectral integral and
integrated along the steepest decent path (see [7]). Generaliza-
tion to multilayered structures is straightforward by employing
the matrix formulation shown in [7]. The convergence of the
numerical approach is sufficiently high to make a closed form
unnecessary for multilayered structures.

E. Image— Mode Representation

For solution of problems where the separation between the
source and the receiver cannot be limited so as to be useful for
the image or mode representations, a mixed image—mode repre-
sentation is likely to be more numerically efficient. In this case
the Green’s function will be reduced to the modal solution (4)
when |x — x'| is large and to the modified image solution (8)
when |x — x'| is small. The modified image solution will be
further reduced to image terms alone if the remainder is negligi-
ble. During implementation we predetermine a threshold value
T for |x — x'| where the mode and modified image formats are
employed for T <|x—x| and T >|x — x'|, respectively. Small
perturbations of T do not affect the accuracy or efficiency of the
algorithm. Thus, the determination of T is not crucial and can
be done systematically. Basic rules are given in [9].

IV. NumericaL REsuLTs

The configuration considered for the numerical analysis is
shown in Fig. 1. Also considered is a single conducting rod.
Parts (a) and (b) of Fig. 2 are plots of the surface charge density
on the two conductors. This problem has been considered by a
modal Green’s function method [5]. Comparisons of this paper’s
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Fig. 1. The configuration considered for the numerical analysis.
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Fig. 2. Surface charge densities on the two conductors of Fig. 1 versus
boundary elements, denoted clockwise from point 4. The voltage on the
first conductor is 1 V, and the second conductor and the two conducting
planes are grounded. (a) First conductor. (b) Second conductor. 1) d /a =
0.96, s/a=1.06;2)d/a=040,s/a=0.48;3) d /a=0.544, s /a =1.168.

results with those of [5] and [10] are shown in Tables I and II;
the agreement is within 2%.

V. CoNCLUSIONS

It has been demonstrated that a multiconductor transmission
line can be efficiently analyzed using a new method which
combines the moment method with a new image—mode Green'’s
function formulation. The image—mode method is a static exten-
sion of the hybrid ray-mode formulation, which to date has
been considered desirable only for large waveguides, which
support many propagating modes. Here we have shown that the
concept of combining resonant solutions such as modes with
“traveling” solutions such as rays is useful even in the static
extreme. The moment method’s advantage is its flexibility to
model arbitrarily shaped, and placed, finite structures. The
numerical efficiency of the image—mode Green’s function makes

TABLE 1
CoMPARISON OF IMAGE-MoDE-MoMENT METHOD SOLUTION
WITH REFERENCES FOR THE NORMALIZED CAPACITANCE
OF A SINGLE Rop

d/a_|s/a | This Method [Referenoes Remarks -

Vi= 1.0 volt (S d rod not idered here)

[10]See Table 111{{5] See Table 1

C/2¢ C/2¢ C/2¢
0.800)2.300; 7.378 7.370 Single Rod
0.600{2.100(  4.249 4274 4268 Approximation
0.400;1.900, 2.730 2744 2742 Used in Ref. [10}
0.200{1.700, 1.707 1716 1715 N
0.10011.600] 1242 1.230

TABLE II

CoMPARISON OF IMAGE-MODE-MOMENT METHOD SOLUTION WITH
REFERENCES FOR THE NORMALIZED CAPACITANCE
oF A Two-Rop CONFIGURATION

d/a [s/a [ This Method ’References

V-V =10 volt

C/e 5] See Table 11 (Q-1)
0.354[0.530 3912 ‘ 3913
0.400 {0.480 4.167 4.165
0.400 (0.520 4.265 4.263
0.400{1.160 5.217 5.213
0.544 (1712 7.388 7.386
Vi-10volt V5 ~-1.0volt

C/e 5] See Tabie 11 (Q=-1)
0.3540.530 7.543 7.545
0.400 (0.480 11.240 11.237
0.400 [0.520 9558 9.512
0.400 }1.160 5.700 5694
0.544{1.712 7.535 7.530

use of the moment method practical in single-layer or multilay-
ered media. This algorithm is not limited to the analysis of two
conductors; any number could be considered. Iterative schemes
are available to provide for efficient computation of mutual
coupling. In addition the close proximity of conductors is not a
problem, due to the explicit removal of any singularities encoun-
tered. The combination of the most efficient global Green’s
function solution (image-mode) with a flexible local coupling
operator (moment method) is potentially very powerful for ap-
plication to many problems with planar symmetry.
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The Design of an Ultra-Broad-Band 3 dB Coupler
’ in Dielectric Waveguide

YING SHEN, DE-MING XU, anp CHEN LING

Abstract —A new structure of embedding dielectric waveguide coupler
is described which offers advantages such as very flat frequency re-
sponse over 50% bandwidth, simple construction, and good repeatabil-
ity. A theoretical analysis by a superposition of normal modes is pre-
sented. Experimental results at the 3 mm wave band are given which
show agreement with theoretical calculations.

I. INnTRODUCTION

Traditional dielectric waveguide (DW) couplers are made
with two identical uniform DW’s (shown in Fig. 1(a)) [5], [1].
This structure has narrow bandwidth response characteristics.
The reasons for this are that 1) all the power propagated in one
guide can be transferred to the other if the coupling region is
long enough, so that the coupling distance is strongly frequency
dependent; 2) the coupling between two DW’s depends on
evanescent fields; and 3) both guides have the same dispersive
characteristics, therefore they work with each other.

Many researchers have treated the problem of designing
dielectric waveguide couplers for millimeter-wave applications
[11-[9], and certain techniques used in the very well known
Riblet coupler date from 30 years ago [6]. Recently these tech-
niques have been of interest to Kim e al. [3] and He [4], who
improved reason 2) described above (see Fig. 1(b)). In 1987,
Tkalainen and Matthaei [1] obtained wide bandwidth as well by
improving reason 1); they proposed an asymmetrical cross sec-
tion DW coupler (see Fig. 1(c)).

In this paper, a new kind of directional coupler, shown in Fig.
1(d), is investigated where two coupled guides with unequal
cross sections are connected directly. It combines the merits of
[1], [3], and [4], and the effects of dispersion are also reduced.
Therefore, ultra-broad-band frequency characteristics are
achieved.

We discuss the basic principles of the connected asymmetric
coupler. The theoretical bandwidth is on the order of 50%.
Experimental results in the frequency range 76—110 GHz are
presented, and these show agreement with theoretical calcula-
tion.

II. THEORETICAL ANALYSIS

With the simplicity of the analysis, we assume that the dielec-
tric slab waveguide directional coupler is lossless, with the
analysis being confined to the parallel coupling segment only.
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Fig. 1. Various directional couplers in dielectric waveguide.
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Fig. 2. Distribution of dielectric constants.

The following theoretical analysis is based on the conditions
stated above.

In Fig. 1(d) is shown the layout of the actual coupler. Let
power be input into port 1; then port 4 and port 3 are the
coupled and the direct port, respectively. We take the standard
slab model to be a lossless dielectric medium. The dielectric
constant €(X) is assumed to vary only with X, as shown in Fig.
2. If the waves are assumed to travel in the Z direction with
propagation constant B, then the electric and magnetic fields
are independent of Y and can be expressed as

E=E(X)*expj(wt—pBz)
H=H(X)*expj(wt—Bz). (1)

For the TE mode, it follows from Maxwell’s equations that
the clectric ficld Ey(X) is described by

dEL(X)/dX?+[k%(X) - B?| Ey(X) =0. 2)
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